Financial Algebra Summer Assignment

Properties of Exponents:

1. Whole number exponents:	= · · · …·	(n factors of x)	
2. Zero exponents: $^{0} = 1$, О		
3. Negative Exponents:	_ = 1		
4. Radicals (principal nth root)	:=	=	
5. Rational exponents:	1/ = -		
6. Rational exponents:	/		
Operations with Exponents:			
1. Multiplying like bases:	= +		
2. Dividing like bases:	 =		
3. Removing parentheses:	() =	(-) =	() =
			()

Special Products and Factorization Techniques

Quadratic Formula:

2
 + + = 0 = $\frac{-\pm 2}{2}$

- - = - + + =

Special Products:

Binomial000020 G)]T₤TQ EMC ₱ <<MCID 10>> BDC q0.00000912 0 612 792 reWħBT₱1 11.04 Tf1 0 0 1 72.02.5 63

Lines

Slope:	$\frac{2^{-}}{2^{-}}$ 1
Slope Intercept Form:	y = mx + b
Standard Form:	ax + by = c
Point-Slope Form:	$y - y_1 = m(x x_1)$

Transformations

Vertical Translations:	= () ±
Horizontal Translations:	= (±)
Y-axis flip:	= (-)
X-axis flip:	= - ()

$$() = - + () = - () = -$$

Functions

- Domain: a set of all possible values for the independent variable
- Range: a set of all possible values for the dependent variable

= +

$$= \frac{-}{+} = \{ \frac{-}{-}, < 1$$

Even and Odd Functions:

(-) = - (),(-) = (),

= + =

End Behavior:

=

-If the degree of f is even and the lead term coefficient is positive, then the left and right

ends of the function both approach positive infinity.

-If the degree of f is even and the lead term coefficient is negative, then the left and right ends of the function both approach negative infinity.

-If the degree of f is odd and the lead term coefficient is positive, then the left end approaches negative infinity and the right end approaches positive infinity.

-If the degree of f is odd and the lead term coefficient is negative, then the left end approaches positive infinity and the right end approaches negative infinity.

() = - + - () = - + - () = -

Functions

$$() = - +$$

 $() = (+) =$

$$() = () = +$$

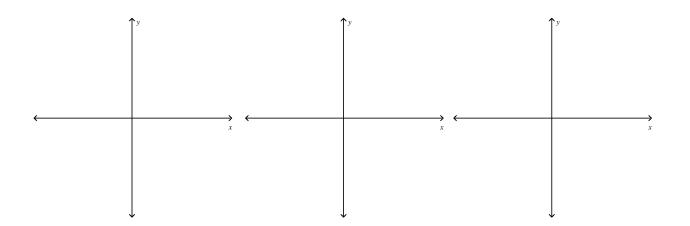
 $() \cdot ()$ $(())$ $(())$

Inverse Functions

In order to calculate an inverse of a function algebraically, you must switch all of the x and y variables and solve the new equation for y. The inverse only exists if the resulting equation is a function.

$$() = +$$
 $() = () = +$

Logarithms


Natural Logarithmic Function:

= =

Inverse Properties of Logarithms:

$$() = (-) + () = - + + () = { + , < 1 - , }$$

Properties of Logarithms

Product Property:+=()Quotient Property:-=(-)Power Property:= \cdot

47) + - - [(+) + - (-)]